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Venusian ‘‘hot spots’’: Physical phenomenon and its quantification
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An overall picture of the Venusian hot spots phenomenon is considered in the framework of the simplest
conceptual models that admit the solutions in the form of steadily rotating ‘‘hot’’ vortices. Model assumptions
take into account only those features of the middle atmosphere in the polar region of Venus that are supported
by observational data and are essential for understanding the physical mechanism initiating similar vortices.
The problem is analyzed in the framework of both the pointlike and petal-like models of cyclostrophic vortices.
Interpretation of these models as an upper and lower bound of a complete theory allows one to find the region
of existence of the regimes responsible for the Venusian hot spots and also to establish and assess numerically
conditions under which such vortices can be formed. The emphasis is on a comparison of the theoretically
established results with the observational data.
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I. INTRODUCTION

Earth and Venus have some similarities and dissimilari
in basic parameters@1#: the radii R are ;6360 and;6052
km; gravity accelerations are;9.8 and 8.9 m s22 ~at sur-
face!; surface temperatures are;288 and;730 K; pressures
near surface are 0.1 and 9.2 Mpa; densities near surfac
1.23 and 65.0 kg m23; rotation periods are 23.9 h~prograde!
and 243 days~retrograde!; overhead motions of the Sun a
east to west for the Earth and west to east for Venus~incli-
nations of equator to orbit are;23° and;177°!. The pres-
sure scale heightsH of the Earth’s and Venusian atmospher
are;8.4 and;15.8 km i.e.,H!R.

The circulation of the Venusian atmosphere has a num
of peculiarities making it different from the atmosphere
the Earth ~Golitsyn @2,3#; Schubert and co-workers@4,5#;
Kerzhanovichet al. @6#!. In the context of the problem con
sidered in this paper most essential of them are the foll
ing.

~1! There is ample evidence~see Fig. 1! for two hot spots
in the Venusian polar region near the cloud tops~at altitudes
about 60 km!. This phenomenon was discovered during
remote sensing from Pioneer Venus spacecraft~Taylor et al.
@7#! and was also observed during IR interferometer sp
trometer studies on board Venera 15 and Venera 16 sp
crafts ~Linkin et al. @8#!. These hot spots located symmet
cally relative to the pole with latitude about 75°–85° have
radius of about 5° and rotate about the pole with a period
Ta;3 days ~Taylor et al. @7#, Schubertet al. @4#; Linkin
et al. @8#!.

~2! Most of the atmosphere in the lower and middle la
tudes at altitudes of the main cloud layer~at altitudes about
60 km! rotates, outstripping the planet rotation~Kerzhanov-
ich et al. @6#; Newmanet al. @9#; Leovy @10#!. This phenom-
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enon, called super-rotation, manifests itself as a strong z
circulation with velocitiesu;100 m s21 at equator~see Fig.
2!. Thus the rotation period of the Venusian atmosphere
be estimated atT'4 days in contrast to 243 days for th
planet rotation. The altitude dependence of angular velo
demonstrated in Fig. 3 has a maximum at heights near
km, followed by a slump at altitudes 65–70 km. The exp
nation of the zonal nature of the circulation with such lar
velocities in the Venusian atmosphere can be given wit

FIG. 1. Brightness temperature isolines indicating a dip
structure of hot spots, as measured on Venus by Venera 15~from
Linkin et al. @8#!.
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the framework of the cyclostrophic balance suggested by
ovy @10#. The cyclostrophic balance implies the balance
tween meridional gradient of pressure and centrifugal for
After the mission of Pioneer Venus spacecraft this hypoth
has got an observational support~Schubertet al. @4#!.

~3! At altitude z;60 km, where hot spots are located,
polar atmosphere is appreciably colder than that at low l
tudes, by ;20–40 K ~Kerzhanovichet al. @6#; Schubert
et al. @4#; Newmanet al. @9#; Linkin et al. 1985 @8#; Yakov-
lev et al. @11,12#!. Radio and infrared data for this altitud
show essentially no change in the average temperature
latitude up to 55°. Next a temperature fall toward the p
becomes more appreciable and goes on in such a manne
a parabolic minimum is formed near the pole~see Fig. 4!.

As was shown in papers of Gryanik@13# and Goncharov
and Pavlov @14#, the cyclostrophic balance~property 2!,
coupled with a meridional thermal contrast~property 3!, can
be used to explain the existence of stationary hot spots
vortex structure~property 1!. Indeed, as it has been me
tioned above, localized temperature disturbances contai
warmer and, correspondingly, lighter gas move in the field
centrifugal forces towards the axis of rotation, i.e., towa
the pole. An accumulation of the warm gas at the pole res

FIG. 2. Scatter of measurements of zonal circulation in the
nusian atmosphere~from Limaye @1#!. For comparison, the solid
line shows the latitude dependence of the zonal velocity on
assumption that the super-rotation of the Venusian atmosphe
characterized by a constant angular velocity.

FIG. 3. The vertical profile of angular velocity of rotation of th
Venusian atmosphere,V, in the polar region~reconstructed after
data of Newmanet al. @9#!. The angular velocity is measured
1025 s21, the altitude at 1 km.
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in the formation of a polar hood. The colder disturbanc
move, correspondingly, away from the pole, which could
sult in the formation of a cold belt~a ‘‘collar’’ ! at a certain
latitude if conditions prohibiting the transfer of disturbanc
down to an equatorial zone exist. Let temperature dis
bances being warmer than an environment be vortical o
In this case, the transfer of the parcels directly to a pole is
general not possible, because, near the pole, a vortex fi
itself in a velocity field induced by another vortex and bo
vortices start to be involved in a mutual rotation around
pole. This could lead to the formation of a stationa
‘‘dipole’’-type vortex structure that rotates with an angul
velocity different from the angular velocity of the zonal flow
Thus the existence of a warm polar hood, cold belt~a ‘‘col-
lar’’ !, and hot spots~a ‘‘dipole’’ ! has a unified nature as
result of the separation of warm and cold gases in the field
centrifugal forces induced by the rotation of planetary atm
sphere. Thermal hood and hot spots are formed at diffe
altitudes. The hood is formed in layers where the vorticity
low enough and warm parcels may be transported directl
the pole; on the contrary, the vortical dipole is formed in t
layer, where vorticity is high enough and warm parcels c
not move directly to the pole because of the interaction
vortices with each other. These vortices have principa
nonlinear thermohydrodynamic nature.

It should be emphasized that the presence of locali
vortices breaks zonal circulation in the polar region. In th
sense, one can speak that the presence of vortices sug
the more complicated nature of dynamics in the polar regi
of Venus as compared to the middle and lower latitudes. T
motivates the interest to study the specifics of circulation
the polar region of Venus in more details.

Within the framework of dipole-vortex conception, Venu
sian hot spots can be characterized by four dimensional
rameters: a relative angular velocityv of rotation around the
pole, a vortex intensity̧ , and two typical length scalesl and
a specifying a distance between vortices and their size,
spectively. In turn, the basic state can be characterized b
angular velocityV of the super-rotation and by a length sca
R0 on which the thermal contrast between the pole and
equator occurs. Because, from a physical standpoint,

-

e
is

FIG. 4. Plot of temperature versus latitude, as defined at the
mbars level~from Newmanet al. @8#!. The dashed line illustrates
the validity of a parabolic approximation near the pole.
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problem is characterized by four dimensionless parame
v/V, l /R0 , a/ l , «5p l 3V(R0¸)21, they must be connecte
by a relation

«5FS v

V
,

l

R0
,
a

l D . ~1.1!

Our aim is to investigate this relationship for two limitin
cases:a/ l !1 when a model of localized pointlike vortice
developed by Gryanik@13# is applicable anda/ l;1,
V l (vR0)21@1 when hot spots phenomenon can be a
lyzed in terms of petal-like vortices considered by Go
charov and Pavlov@14#. Using these extreme cases as
upper and lower bound of the theory, we intend in this pa
to give a diagram of states showing the region of existenc
possible regimes responsible for stationary rotating str
tures consisting of ‘‘hot’’ vortices of the dipole type and al
to elucidate and to quantify conditions under which the
vortices can be formed.

To this end, in Sec. II the conceptual model of c
clostrophic circulation in the Venusian polar region is intr
duced. In Sec. III a class of steady rotating vortex structu
is considered. From them we study two types of dipolel
structures—localized point and petal vortices—in Sec.
and V, respectively. Section VI contains the comparison
theoretical results with observational data and discussion

II. CONCEPTUAL MODEL

Reasoning from above cited properties of the Venus
atmosphere dynamics, we present the simplest concep
model that describes it as the dynamics of a two-dimensio
incompressible fluid in a Cartesian coordinate system ro
ing about vertical axisx3 with the constant angular velocit
V. Because all dynamical variables of the problem are fu
tions only of horizontal position vectorx5$x1 ,x2%, the basic
equations of hydrothermodynamics in the field of centrifu
force ~for a full derivation see Greenspan@15#! are

] tv i1vk]kv i22V« ikvk52r21] i p1] iF, ~2.1!

] tT1vk]kT50, ~2.2!

]kvk50, ~2.3!

wherev i are components of a velocity field in the rotatin
coordinate system,r is fluid density,p is pressure,T is tem-
perature,F5 1

2 V2xi
2 is the potential of centrifugal force, an

« ik is the alternating tensor~11 for ik512, 21 for ik521,
and zero for two indices being equal!.

The energy equation~2.2! states that all heat exchang
are by convection; no conduction or heat sources be
present. Proceeding from the incompressibility assumpt
the fluid densityr depends only on the temperatureT but not
on pressurep. Because this dependence is weak enough
the class of problems of interest here, we can use the
proximation

r5r0@12b~T2T0!#, ~2.4!
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where b is the coefficient of thermal expansion,r0 is an
undisturbed density, andT0 is an undisturbed temperature.

Application of this system of equations to describe the
spots dynamics in a polar region of the Venusian atmosph
means that we restrict our study to two-dimensional motio
of enough large horizontal scalel and that vortex structure
arise in a ‘‘thin’’ flat atmospheric layer near the 65 km al
tude, where, as shown in Fig. 3, the angular velocityV of
rotation remains practically constant.

The large-scale approximation also gives justification
using the model of an inviscid ideal fluid. Omitting viscou
terms in Eq.~2.1! implies that frictional forces are negligibl
compared to the Coriolis force. For estimating the ratio
these forces, it is common practice to use the Ekman num
E5 1

2 nV21l 22 where the quantityn is considered as the co
efficient of kinematic or turbulent viscosity. Because the a
gular velocity V of the Venusian atmosphere measur
(1 – 5)31025 s21, for n;1026– 1024 m2 s21 and l
;10– 103 km Ekman number falls in the rangeE
;10211– 1023!1.

For the undisturbed base state of the fluid whenv50, it
follows from Eq.~2.1! the condition ofcyclostrophic balance

r0
21] i p05V2xi , ~2.5!

wherep0 is the background pressure.
Assuming that the departures of the pressurep85p2p0

and the densityr85r2r05r0b(T02T) from their undis-
turbed valuesp0 and r0 are small enough, i.e.,b(T02T)
!1, we can use the Boussinesq approximation~see, for ex-
ample, Turner@16#; Landau and Lifshitz@17#!. This approxi-
mation implies that one may neglect the density variatio
and hence replacer by the constant valuer0 , except in the
‘‘buoyancy term’’ r8] iF/r0 , where equation of state~2.4!
must be used. As a result, Eq.~2.1! can be rewritten as

] tv i1vk]kv i22V« ikvk52r21] i p81V2b~T2T0!xi ,

~2.6!

] tT1vk]kT50,

]kvk50.

To simulate the effect of increasing temperature from
pole to the equator, we take the background distribution
the temperature in the form

Ts~x!5T01
g

2
x2, g.0. ~2.7!

This expression can be considered as an expansion of
dially symmetric stationary distributionTs(x) in the Taylor
series in the vicinity of the pole.

The incompressibility condition~2.3! makes it possible to
express velocity components in terms of the stream func
c,

vk52«ki] ic.
4-3
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GONCHAROV, GRYANIK, AND PAVLOV PHYSICAL REVIEW E 66, 066304 ~2002!
Taking the operator curl5«ki] i of Eq. ~2.6! and thus ex-
cluding the pressurep8 from the description, we obtain th
coupled set of governing equations

] tDc1« ik] ic]kDc5V2b« ikxi]kt,

] tt1« ik] ic]kt5g« ikxi]kc, ~2.8!

whereDc is vorticity andt5T2Ts is the temperature per
turbation.

In the absence of temperature stratification (g50) and
centrifugal force (V50), Eqs. ~2.8! become traditional
equations for the vortex evolution in a two-dimensional id
fluid.

III. STEADILY ROTATING VORTEX STRUCTURES

Let us consider the solutions of Eqs.~2.8! which corre-
spond to stationary vortex structures rotating with const
angular velocityv around the pole.

Taking into account that when going to the new rotati
coordinate system where the structures become immova
the derivative with respect to time is transforming as

] t52v« ikxi]k ,

we obtain the following system of equations:

« ik

]

]xi
S c2v

x2

2 D ]Dc

]xk
5V2b« ikxi

]t

]xk
, ~3.1!

« ik

]

]xi
S c2v

x2

2 D ]t

]xk
5g« ikxi

]c

]xk
. ~3.2!

Rewriting Eq.~3.2! in the form

« ik

]

]xi
S c2v

x2

2 D ]

]xk
S t1g

x2

2 D50,

we find that

c2v
x2

2
5FS t1g

x2

2 D . ~3.3!

The functionF can be found in an explicit form from th
requirement that the flow in the background regime with
disturbancest andc is also a solution of Eq.~3.3!.

Insertingt[0 andc[0 in Eq. ~3.3!, we obtain

F~z!52
v

g
z, ~3.4!

and hence the functionsc andt are linearly related as

c52
v

g
t. ~3.5!

Using this relation in Eq.~3.2! gives the equation describin
vortex structures in terms of stream function
06630
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« ik

]

]xi
S c2v

x2

2 D ]

]xk
S Dc2

1

R2 c D50, ~3.6!

where the length scaleR, expressed as

R5R0~v/V!, R05~bg!21/2, ~3.7!

is the dynamical characteristic of the model whileR0 is the
thermal length scale characterizing the model in the ba
ground regime.

It should be emphasized that solutions of Eq.~3.6! corre-
sponding to localized vortices exist only wheng.0. The
physical meaning of this condition is that the field of ce
trifugal forces leads to the movement of colder~denser! fluid
parcels away from the rotation axis, and an equilibrium ot
than a thermodynamic one may hold only in a case wh
temperature inhomogeneity supported by outer sources
hibits such movement, i.e., if temperature increases with
distance from the rotation axis:g.0.

IV. LOCALIZED POINTLIKE VORTICES

Let us consider solutions of Eq.~3.6! describing a radially
symmetric vortex dipole with center in the pole

Dc2R22c5¸@d~z2z0!1d~z2z0* !#. ~4.1!

Hered(z) is the Dirac delta function,̧ are vortex intensities
(¸.0 if the circulation is counterclockwise!, z05eiul /2, and
z0* 52eiul /2 are coordinates of vortices in the comple
plane z5x11 ix2 . It follows from Eq. ~4.1! that the flow
induced by such vortices is expressed in terms of the Gr
function G(z) of the operator (D2R22)

c5¸@G~ uz2z0u!1G~ uz2z0* u!#, ~4.2!

G~ uzu!52
1

2p
K0S uzu

R D , ~4.3!

where Kn(x), n50,1,... is the modified Bessel function o
nth order.

Substituting Eqs.~4.1! and~4.3! into Eq. ~3.6! and equat-
ing terms withd function and its derivatives, we obtain th
condition connecting parameters of vortices with the angu
velocity of their rotation:

v l 5
¸

pR
K1S l

RD , ~4.4!

whereR as the function ofv is given by Eq.~3.7!.
As shown by Gryanik@13#, Eq. ~4.4! can be rewritten in

terms of the dimensionless parametersj and«,

«5
p l 3V

R0¸
, j5

V l

vR0
, ~4.5!

as the equation

«5j2K1~j!. ~4.6!
4-4
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The plot corresponding to this equation is presented
Fig. 5 and later will be treated~see Sec. VI! as a lower bound
for the basic relation~1.1!. Among other things, this plo
indicates the law whereby the quantity« characterizing a
vortex intensity depends on the parameterV/v, when the
ratio l /R0 is fixed.

In accordance with Fig. 5, it is clear that for each fixed«
Eq. ~4.6! has two rootsj6 if «,«* , one root j* if «
5«* , and no roots if«.«* , where «* is the threshold
value of the parameter«. The numerical computation give
«* '0.63 andj* '1.38. Thus a point-vortex dipole can exi
only if

p l 3V

R0¸
<«* '0.63. ~4.7!

If the angular velocity of rotationV is fixed inequality
~4.7! shows that either vortices should be sufficiently inten
¸>¸* 5p l 3VR0

21«
*
21, or distance between them shou

not exceed a limiting valuel< l * 5(p)21/3(R0«* ¸/V)1/3.
The threshold value of the intensity of vortices increa
with increasing of angular velocity of rotatioņ* ;V while
the limiting distance decreases:l * ;V21/3. The threshold
value of the intensity of vortices decreases with the decre
ing of temperature inhomogeneity̧* ;g21/2 but the limiting
distance increases:l * ;g1/6.

V. PETAL-LIKE VORTICES

Solutions considered in this section look like two-pe
regions bounded by a closed contour such that the qua
q5Dc2R22c takes constant valuesq0 and 0, respectively
inside and outside the region~details of the contour dynam
ics method and of the operator techniques can be foun
Refs. @18#, @19#!. Analytic representations of such solution
in the complexz plane are given by the contour integral

q5
q0i

2p R ds
ẑs

z2 ẑ
, ~5.1!

which is taken around the closed contourz5 ẑ(s), wheres is
contour arc length.

FIG. 5. The parameter« as the function of ratio of angula
velocities of rotationV/v for the pointlike model.
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n

e

s

s-

l
ity

in

Because the vectorẑs5] ẑ/]s is tangential to the contou
and the normalizing conditionuẑsu251 holds, we can write
that

ẑs5eiw, ~5.2!

wherew is the inclination angle of the tangent to the conto
in a points.

The equation for finding the contour shape is most c
veniently formulated in terms of a contour curvaturek that is
related with the inclination anglew as

k5]sw. ~5.3!

Referring to Goncharov and Pavlov@14# for more details, we
present here the summary results on describing a con
shape in a weak-curvature approximation when the stre
function ĉ(s) on the contour and the curvaturek(s) are
connected by simple local relation~Appendix A!

ĉ~s!5
q0R3

4
k~s!, ~5.4!

andk is governed by the equation~Appendix B!

S ]k

]sD 2

52
1

4
k41c1k21d23k1c2 . ~5.5!

Herec1 andc2 are two dimensional constants parametrizi
the solutions, and the scaled is given by

d5
R

2 S q0

v D 1/3

. ~5.6!

Within a class of self-nonintersecting contours, Eq.~5.5! has
the periodic solution expressed in terms of elliptic sn fun
tions as

k5
1

d S b1
a2b

12a snS l

d
sumD D , ~5.7!

where parametersa, b, l are related to the independent bas
parametersa andm,

a52221/3
a~11m22a2!

@~12m!2a~m2a4!#1/3,

b5221/3
a21m~a222!

a@~12m!2a~m2a4!#1/3, ~5.8!

l5221/3
A~a22m!~12a2!

@~12m!2a~m2a4!#1/3.

In turn, the parametersc1 andc2 are expressed in terms o
a andb as

c15d22S ba

2
2

1

a1bD , c252
d24

4
~b1a1b2a2!.

~5.9!
4-5
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The equations describing the boundary shape of vo
structures rotating in thez plane can be obtained by integra
ing Eq.~5.2!. It can be directly verified that ifk satisfies Eq.
~5.5!, the solution of Eq.~5.2! is given by

ẑ~s!52d3F]k

]s
1 i S c12

k2

2 D Geiw, ~5.10!

where in turn the inclination angle can be found by integr
ing expression~5.3! along a contour:

w~s!5Es

ds8k~s8!5
b

d
s1

a2b

l
PXa2,amS l

d
sumD umC

22 Im lnFcnS l

d
sumDAa22m

1 i dnS l

d
sumDA12a2G . ~5.11!

Here P(u;qum) is the incomplete elliptic integral of the
third kind and am(uum) is the Jacobi amplitude.

From Eq.~5.7!, it is clear that the contour curvature of th
two-petal structure, being an oscillatory periodic functi
with period 4K(m)/l, has extrema at the points

s25~4 j 21!d
K~m!

l
, s15~4 j 23!d

K~m!

l
, j 51,2,

whereK(m) is the complete elliptic integral of the first kin
@20#. The tops of the petals lie at the points1 and the point
s2 are in the troughs between the petals. Examples of t
petal structures are illustrated in Fig. 6 for various values
the parametera.

FIG. 6. Double-petal vortex structures in the plan ofz5x1

1 ix2 : a50.05 ~a!; a50.20 ~b!; a50.30 ~c!; a50.35 ~d!. The
pointss1 lie in the petal tips ands2 lie between the petals.
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As analysis of Eq.~5.11! shows, because a contour of
two-petal vortex structure is closed, we must satisfy the c
dition

bk~M !1~a2b!P~a2um!52
p

4
l, ~5.12!

whereP(uum)5P„u;(p/2)um… is the complete elliptic inte-
gral of the third kind.

Equation ~5.12! enable us to compute the dependen
m(a) displayed in Fig. 7 as a curve that has a limit po
(a50.353,m520.246) where the contour of the vorte
structure becomes self-contacting.

Distances of pointss1 , s2 from the coordinate origin are
given by

r1521/3d
2m~112a!1a3~a12!

@~12m!a2~a42m!2#1/3 ,

r2521/3d
2m~122a!1a3~a22!

@~12m!a2~a42m!2#1/3 . ~5.13!

Being functions ofa, r1 andr2 identify the maximal and
minimal sizes of vortex structure, respectively.

The self-contacting occurs whenr250. Together with
Eq. ~5.12! this gives all the necessary conditions to comp
the marginal valuer1* /d52.99.

This extreme case can be used to estimate an upper b
for the basic relation~1.1!. The result to be expected is ev
dently applicable whena/ l;1 andj5V l (vR0)21@1, i.e.,
when a finite size vortex can be described in a we
curvature approximation. The corresponding expression
be easily obtained from Eq.~5.6! if we take into account tha

q05
¸

S
, ~5.14!

where¸ and S are the vortex intensity of an isolated pet
and its area, respectively.

Because in the limiting case@see Fig. 6~d!# the typical
size l and the areaS are approximately estimated as

FIG. 7. The dependencem(a) for the two-petal vortex regime
Marginal point (a50.35,m520.25) corresponds to limit vortex
structure with a self-contact contour.
4-6
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l 54d, S5d2, ~5.15!

from Eq. ~5.6! it follows that

S l

RD 3

5
128̧

l 2v
. ~5.16!

After reformulation in terms of parameters« andj defined as
before by Eq.~4.5!, Eq. ~5.16! gives the law

«5
128p

j2 , ~5.17!

which is plotted in Fig. 8.

VI. DISCUSSION AND CONCLUSIONS

First and foremost we sum up those conclusions ab
properties of hot spots in the polar region of Venus which
in a qualitative agreement with both the discussed theore
models. Some quantitative estimates of structural and
namic parameters of the dipole are given as well.

~1! The hot spots are dipolelike vortical structures cons
ing of two vortices of an equal intensity. Being symmet
cally located at equal distances from the pole, these vort
rotate around it with a constant angular velocity~Taylor
et al. @7#!.

~2! The hot vortex spots cannot penetrate to altitudez
.70 km. This is due to the character of a meridional te
perature inhomogeneity in the polar region. Because
heightsz.70 km the temperature decreases from the p
toward the equator~Newmanet al. @9#; Linkin et al. @8#! and
henceg,0, Eqs.~2.8! do not have localized vortical solu
tions in this case. Moreover, as can be shown, ifg,0 the
cyclostrophic instability does not develop. The vortices se
to be localized in the layer 55,z,65 km. This is suggested
by the character of vertical distribution of vorticity in th
polar region~see Fig. 3!.

In order that temperature data characterizing the struc
of hot spots can be used for quantitative estimates, the
tical parametersq0 and ¸ should be expressed in terms
thermal ones. This provides a possibility to indirectly es
mate the quantitiesj, « which were arising in previous sec
tions under theoretical studying.

FIG. 8. Plot of quantity« versus parameterj for the petal-like
model.
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This task turns out to be sufficiently simple for the mod
of petal-like vortices. Because the model exploits the
proximation d/R@1, the corresponding estimations can
easily obtained from the relationship

Dc2R22c5q0 , ~6.1!

which holds throughout the vortex core.
Ignoring the first term in Eq.~6.1! and taking into accoun

Eq. ~3.5! together with the relation

b'1/T0 , ~6.2!

whereT0 is the pole temperature, at the second approxim
tion in the small parameterR/d we can find the evaluation

q05
V2

v

tm

T0
, ~6.3!

wheretm is the amplitude of the temperature deviation in t
hot spot against the backgroundTs .

Substitution of Eqs.~6.3! and ~5.15! into Eq. ~5.6! gives

v

V
5S l

2R0
D 3 T0

tm
, ~6.4!

where the temperature ratiotm /T0 emerges instead of th
parameterq0 /V.

From Eqs.~6.3! and ~6.4! we can deduce one more im
portant property supported by observations~Schubertet al.
@4#; Taylor et al. @7#; Linkin et al. @8#!. Because the vortex
spots are hot and hence the temperature deviationtm is posi-
tive, the quantitiesv andq0 must have the same sign as th
angular velocityV of rotation. Therefore the hot spots hav
the same sense of rotation as the Venusian atmosphere
outstrip it.

In order that the point-vortex model could also be inte
preted in terms of the thermal structure of hot spots, we m
extend the results of Sec. IV to dipoles composed of fin
size vortices. To do this, we assume that the vortices h
circular cores of an equal radiusa and that the quantityq is
kept constant, taking valuesq0 and 0, respectively, inside
and outside the vortex core.

If we assume further that the size of the vortices is mu
less than the intervortical distancel but is much more than
the screening radiusR, i.e.,

R!a! l ,

and neglect core’s deformations arising only in the fifth ord
of the perturbation theory in the small parametera/ l , we can
then conclude that the result~6.3! remains valid at the secon
approximation in the small parameterR/a.

Equation~6.3! enables us to use measuring data char
terizing thermal structure of hot spots in order to estimate
parameter« for the theory of both pointlike and petal-lik
vortices.

From Eq.~4.5!, with the help of Eq.~5.14!, we can find
4-7
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«5
p l 3

SR0

v

V

T0

tm
, ~6.5!

where depending on the choice of model the vortex core a
S takes valuesS5pa2 for the point model andS5 l 2/16 for
the petal one.

Because comparisons of theoretical results with exp
mental data are more convenient in terms of the parame
tm /T0 and v/V, after reparametrization of Eqs.~4.6! and
~5.17! we obtain the relations

tm

T0
5

lR0

a2 S v

V D 3

K1
21S l

R0

V

v D , ~6.6!

tm

T0
5

1

8 S l

R0
D 3 V

v
, ~6.7!

which are used as upper and lower bounds of the theory
Following the factual evidence~see, for example, Linkin

et al. @8#!, to make estimates we take valuesg'2
31026 K km22, l'23103 km, T0'250 K, and a
'500 km, which are typical for the Venusian atmosphe
As b'1/T0 , the thermal scale can be estimated in acc
dance with Eq.~3.7! asR0'104 km.

Plugging the parametersl, a, and R0 in Eqs. ~6.6! and
~6.7!, we find the domain of natural physical paramete
tm /T0 and v/V ~see Fig. 9! where the Venusian hot spo
phenomenon can be explained within the framework of
clostrophic vortex theory.

As may be inferred from Fig. 9, the upper bound det
mined by the point-vortex model can be unlikely attain
due to the inequalitytm!T0 .

To show the location of the Venusian hot spots pheno
enon in Fig. 9, we estimate the range of typical parame
tm /T0 andv/V, using reliable experimental data. Accordin
to this data~Taylor et al. @7#; Linkin et al. @8#!, the rotation
period Ta of the Venusian hot spots ranges from 2.7 to 2
days while the super-rotation period is estimated atTatm
54 days.

FIG. 9. Domain of existence of hot spots phenomenon. T
upper curve~point vortices! is calculated from Eq.~6.6! and the
down one~patches! is calculated from Eq.~6.7!. The values of
parameters are given in text. The dark rectangle marks the rang
experimental parameters.
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As the quantityv is the relative angular velocity of the
hot spots rotation, it is determined as the difference

v5uV2vau,

whereV52p/Tatm andv52p/Ta are the absolute angula
velocities of rotations for the atmosphere and the hot sp
respectively. Thus we find that the parameterv/V falls in the
range 0.38–0.48.

Assuming that reasonable values oftm lie in the range
20–30 K, we obtain the domain marked in Fig. 9 by the da
rectangle. Its location clearly indicates that although both
our models are far from the hot spots phenomenon obse
in the Venusian atmosphere, they serves as upper and lo
bounds. For a more exact quantitative description, there
need to develop intermediate models where the param
a/ l would take values between 0 and 1.

The petal-like model allows us to estimate the influen
of the vortex dipoles on the zonal circulation. After avera
ing Eq. ~6.1! over latitudeq, we find

S 1

r

]

]r
r

]

]r
2

1

R2D c̄5
2q0

p
q~r !, ~6.8!

wherec̄ is the latitude-averaged stream function,

c̄5
1

2p E
0

2p

cdq, ~6.9!

andq(r ) is the petal shape in the polar coordinatesr, q.
Using the stream functionc̄, we can compute the mea

zonal velocity as

u5Vr 1
]c̄

]r
, ~6.10!

where the first term describes solid-state rotation with
angular velocityV and the second one is the dipole cont
bution to the zonal circulation.

The results of numerical calculations, in accordance w
Eqs.~6.8! and ~6.10!, under conditions

]c̄

]r
U

r 50

50,
]c̄

]r
U

r 5`

50,

are shown in Fig. 10 where parametersl, R0 , tm , T0 take the
following typical values: l 523103 km, R05104 km, tm
525 K, andT05250 K.
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APPENDIX A: RELATIONSHIP BETWEEN THE STREAM
FUNCTION AND CURVATURE ON THE BOUNDARY

OF THE DOMAIN

We find the equation

« ik

]

]xi
S c2v

r 2

2 D ]

]xk
S Dc2

V2gb

v2 c D50 ~A1!

for the quantity

q5Dc2R22c, R5
uvu

VAgb
, ~A2!

whereR is the length-scale characteristic of the problem.
The spatial distribution of the quantityq is supposed to be

given by a piecewise uniform function in the planez5x1
1 ix2 . Let us note again thatx5$x1 ,x2%. Such a distribution
may be described simply using the two-dimensional Hea
side step functions:u(z)51, if zPD, andu(z)50, if z¹D.
Here,D is a singly connected region in thez plane bounded
by a closed contour, which is given in the parametric for

z5 ẑ~s!, ~A3!

wheres is contour arc length. In terms ofu functions, the
distributionq of interest can be written as

q5q0u~z!, ~A4!

whereq0 is a constant value that the quantityq takes within
regionD.

For the vectorẑs5] ẑ/]s tangential to the contour, th
following normalizing condition holds:

uẑsu251. ~A5!

The u functions admit the following analytical represe
tation through the contour integral:

u~z!5
i

2p R ds
ẑs

z2 ẑ
. ~A6!

FIG. 10. The influence of hot spots on the mean zonal veloc
The dashed line corresponds to the rotational motion with cons
angular velocity.
06630
i-

Using the formula~see Ref.@21#! that can be obtained as
corollary of the Cauchy’s formula in the theory of functio
of complex variable

]

] z̄

1

z
5pd~x!,

the z derivative of theu function can be easily calculate
from Eq. ~A6! as

]u

] z̄
5

i

2 R ds zsd~x2 x̂!. ~A7!

Here,z5x11 ix2 , z̄5x12 ix2 . The substitution of Eq.~A4!
in Eq. ~A1!, after differentiatingu functions using Eq.~A7!,
leads to the contour integral

« ik

]

]xi
S c2v

r 2

2 D ]

]xk
S Dc2

1

R2 c D
524q0F]u

]z

]

] z̄ S c2v
r 2

2 D G
5q0 R dsd~x2 x̂!

]

]s S ĉ2v
uẑu2

2 D50. ~A8!

From this it follows that the rotating-frame stream functio
must be constant on the vortex boundary:

ĉ2v
uẑu2

2
5const. ~A9!

Here,ĉ is defined byĉ5cx5 x̂ .
Equation~A9! determines the boundary shape~A3! if the

stream functionĉ is expressed in terms of the contour coo
dinatesx̂. Taking into account that Green’s functionG(x,x8)
of operatorD2R22 is given by

G~x,x8!52
1

2p
K0S ux2x8u

R D ,

and solving Eq.~A2!, we obtain the stream functionc in
terms ofq:

c~x!52
1

2p E dx8q~x8!K0S ux2x8u
R D , ~A10!

where dx5dx1dx2 and Kn(j) denotes a modified Besse
function of nth order@20#.

To convert Eq.~A10! into a contour integral, we make us
of the equality

K05R2DK012pR2d~x2x8!54R2
]2K0

] z̄]z
12pR2d~x2x8!,

which follows immediately from the definition of Green
function. Assuming thatx→ x̂, being outside of the regionD,
and integrating Eq.~A10! by parts, with obvious transforma
tions, we find

y.
nt
4-9
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ĉ~s!52
2R2

p E dx8q~x8!
]2

] z̄8]z8
K0S ux2x8u

R D
5

2q0R2

p E dx8
]u8

] z̄8

]

]z8
K0S ux̂2x8u

R D
5

Rq0

2p E ds8K1S uẑ82 ẑu
R D ẑs8~ z̄82 z̄!

uẑ82 ẑ8u
. ~A11!

Now we introduce the new variablew(s)—the slope angle—
the unit vector tangential to the contour at a points makes
with the axisx1 . Then, according to Eq.~A5!, we have

]sẑ5eiw~s!. ~A12!

Let the following be vortex structures with a ‘‘weak con
tour curvature’’:

uku5u]swu!1/R. ~A13!

In this case, it is possible to make the radical approximati
in the integral of Eq.~A11!,

uẑ82 ẑu'us82su, Im ẑs8~ z̄82 z̄!' 1
2 k~s!~s82s!2.

~A14!

Here, the overbar denotes complex conjugation.
Using Eq.~A14!, the integral~A11! can be reduced to th

local relation

ĉ~s!5
q0R3

4
k~s!, ~A15!

which relates the stream functionĉ and the contour curva
ture k in the points. In the work@22#, a ‘‘stream-function’’-
curvature relation analogous to Eq.~A15! is derived using a
different formalism.

APPENDIX B: EQUATION FOR CURVATURE

Let

ẑ5eiw~ x̂1 i ŷ !, ~B1!

wherex̂ andŷ as well asw are some functions of the contou
arc lengths. From Eq. ~A12! the following relationships
hold:
d

t-

06630
s

] x̂

]s
2k ŷ51,

] ŷ

]s
1k x̂50. ~B2!

Substituting Eqs.~A15! and ~B1! in Eq. ~A9!, we obtain

q0R3

2v
k2~ x̂21 ŷ2!5const. ~B3!

We take the length scaled5(R/2)(q0 /v)1/3. In terms of
the dimensionless variables, from Eq.~B2! and Eq. ~B3!
without changing the old symbol designations, we obtain
equations

] x̂

]s
2k ŷ51,

] ŷ

]s
1k x̂50,

k2 1
4 ~ x̂21 ŷ2!5const. ~B4!

The expressions for variablesx̂ and ŷ in terms of curvature
are obtained from Eq.~B4!:

x̂52
]k

]s
, ŷ52c12k2. ~B5!

The substitution~B5! in Eq. ~B4! gives the equation for the
normalized curvature:

S ]k

]sD 2

52
1

4
k41c1k21k1c2 . ~B6!

Herec1 andc2 are two constants parametrizing the solutio
of the problem. Recall that the condition for application
Eq. ~B6! is determined by the inequality~A13!, which in
dimensionless form is given by

uku!
d

R
5

1

2 Uq0

v U1/3

. ~B7!

As the inequality~B7! shows, the condition of weak contou
curvature does not limit physical applicability of the sol
tions as might much appear at first sight. Let recall thata,
d@R. The reason is that the inequality~B7! holds always for
intense vortices characterized by large enough values of
ratio q0 /v.
s.
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